Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

30=x^{2}\times 145
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 145=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{30}{145}
Whakawehea ngā taha e rua ki te 145.
x^{2}=\frac{6}{29}
Whakahekea te hautanga \frac{30}{145} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x=\frac{\sqrt{174}}{29} x=-\frac{\sqrt{174}}{29}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
30=x^{2}\times 145
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 145=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}\times 145-30=0
Tangohia te 30 mai i ngā taha e rua.
145x^{2}-30=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 145\left(-30\right)}}{2\times 145}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 145 mō a, 0 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 145\left(-30\right)}}{2\times 145}
Pūrua 0.
x=\frac{0±\sqrt{-580\left(-30\right)}}{2\times 145}
Whakareatia -4 ki te 145.
x=\frac{0±\sqrt{17400}}{2\times 145}
Whakareatia -580 ki te -30.
x=\frac{0±10\sqrt{174}}{2\times 145}
Tuhia te pūtakerua o te 17400.
x=\frac{0±10\sqrt{174}}{290}
Whakareatia 2 ki te 145.
x=\frac{\sqrt{174}}{29}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{174}}{290} ina he tāpiri te ±.
x=-\frac{\sqrt{174}}{29}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{174}}{290} ina he tango te ±.
x=\frac{\sqrt{174}}{29} x=-\frac{\sqrt{174}}{29}
Kua oti te whārite te whakatau.