Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

30=x^{2}\times 1.45
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 1.45=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{30}{1.45}
Whakawehea ngā taha e rua ki te 1.45.
x^{2}=\frac{3000}{145}
Whakarohaina te \frac{30}{1.45} mā te whakarea i te taurunga me te tauraro ki te 100.
x^{2}=\frac{600}{29}
Whakahekea te hautanga \frac{3000}{145} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x=\frac{10\sqrt{174}}{29} x=-\frac{10\sqrt{174}}{29}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
30=x^{2}\times 1.45
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 1.45=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}\times 1.45-30=0
Tangohia te 30 mai i ngā taha e rua.
1.45x^{2}-30=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 1.45\left(-30\right)}}{2\times 1.45}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1.45 mō a, 0 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1.45\left(-30\right)}}{2\times 1.45}
Pūrua 0.
x=\frac{0±\sqrt{-5.8\left(-30\right)}}{2\times 1.45}
Whakareatia -4 ki te 1.45.
x=\frac{0±\sqrt{174}}{2\times 1.45}
Whakareatia -5.8 ki te -30.
x=\frac{0±\sqrt{174}}{2.9}
Whakareatia 2 ki te 1.45.
x=\frac{10\sqrt{174}}{29}
Nā, me whakaoti te whārite x=\frac{0±\sqrt{174}}{2.9} ina he tāpiri te ±.
x=-\frac{10\sqrt{174}}{29}
Nā, me whakaoti te whārite x=\frac{0±\sqrt{174}}{2.9} ina he tango te ±.
x=\frac{10\sqrt{174}}{29} x=-\frac{10\sqrt{174}}{29}
Kua oti te whārite te whakatau.