Whakaoti mō x (complex solution)
x=\frac{-40+i\times 10\sqrt{131}}{49}\approx -0.816326531+2.335821049i
x=\frac{-i\times 10\sqrt{131}-40}{49}\approx -0.816326531-2.335821049i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-8x-4.9x^{2}=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-8x-4.9x^{2}-30=0
Tangohia te 30 mai i ngā taha e rua.
-4.9x^{2}-8x-30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-4.9\right)\left(-30\right)}}{2\left(-4.9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4.9 mō a, -8 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-4.9\right)\left(-30\right)}}{2\left(-4.9\right)}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+19.6\left(-30\right)}}{2\left(-4.9\right)}
Whakareatia -4 ki te -4.9.
x=\frac{-\left(-8\right)±\sqrt{64-588}}{2\left(-4.9\right)}
Whakareatia 19.6 ki te -30.
x=\frac{-\left(-8\right)±\sqrt{-524}}{2\left(-4.9\right)}
Tāpiri 64 ki te -588.
x=\frac{-\left(-8\right)±2\sqrt{131}i}{2\left(-4.9\right)}
Tuhia te pūtakerua o te -524.
x=\frac{8±2\sqrt{131}i}{2\left(-4.9\right)}
Ko te tauaro o -8 ko 8.
x=\frac{8±2\sqrt{131}i}{-9.8}
Whakareatia 2 ki te -4.9.
x=\frac{8+2\sqrt{131}i}{-9.8}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{131}i}{-9.8} ina he tāpiri te ±. Tāpiri 8 ki te 2i\sqrt{131}.
x=\frac{-10\sqrt{131}i-40}{49}
Whakawehe 8+2i\sqrt{131} ki te -9.8 mā te whakarea 8+2i\sqrt{131} ki te tau huripoki o -9.8.
x=\frac{-2\sqrt{131}i+8}{-9.8}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{131}i}{-9.8} ina he tango te ±. Tango 2i\sqrt{131} mai i 8.
x=\frac{-40+10\sqrt{131}i}{49}
Whakawehe 8-2i\sqrt{131} ki te -9.8 mā te whakarea 8-2i\sqrt{131} ki te tau huripoki o -9.8.
x=\frac{-10\sqrt{131}i-40}{49} x=\frac{-40+10\sqrt{131}i}{49}
Kua oti te whārite te whakatau.
-8x-4.9x^{2}=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4.9x^{2}-8x=30
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4.9x^{2}-8x}{-4.9}=\frac{30}{-4.9}
Whakawehea ngā taha e rua o te whārite ki te -4.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{8}{-4.9}\right)x=\frac{30}{-4.9}
Mā te whakawehe ki te -4.9 ka wetekia te whakareanga ki te -4.9.
x^{2}+\frac{80}{49}x=\frac{30}{-4.9}
Whakawehe -8 ki te -4.9 mā te whakarea -8 ki te tau huripoki o -4.9.
x^{2}+\frac{80}{49}x=-\frac{300}{49}
Whakawehe 30 ki te -4.9 mā te whakarea 30 ki te tau huripoki o -4.9.
x^{2}+\frac{80}{49}x+\frac{40}{49}^{2}=-\frac{300}{49}+\frac{40}{49}^{2}
Whakawehea te \frac{80}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{40}{49}. Nā, tāpiria te pūrua o te \frac{40}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{80}{49}x+\frac{1600}{2401}=-\frac{300}{49}+\frac{1600}{2401}
Pūruatia \frac{40}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{80}{49}x+\frac{1600}{2401}=-\frac{13100}{2401}
Tāpiri -\frac{300}{49} ki te \frac{1600}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{40}{49}\right)^{2}=-\frac{13100}{2401}
Tauwehea x^{2}+\frac{80}{49}x+\frac{1600}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{40}{49}\right)^{2}}=\sqrt{-\frac{13100}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{40}{49}=\frac{10\sqrt{131}i}{49} x+\frac{40}{49}=-\frac{10\sqrt{131}i}{49}
Whakarūnātia.
x=\frac{-40+10\sqrt{131}i}{49} x=\frac{-10\sqrt{131}i-40}{49}
Me tango \frac{40}{49} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}