Whakaoti mō x
x=\frac{2}{15}\approx 0.133333333
x=-0.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
30x^{2}+2x-0.8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\times 30\left(-0.8\right)}}{2\times 30}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 30 mō a, 2 mō b, me -0.8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 30\left(-0.8\right)}}{2\times 30}
Pūrua 2.
x=\frac{-2±\sqrt{4-120\left(-0.8\right)}}{2\times 30}
Whakareatia -4 ki te 30.
x=\frac{-2±\sqrt{4+96}}{2\times 30}
Whakareatia -120 ki te -0.8.
x=\frac{-2±\sqrt{100}}{2\times 30}
Tāpiri 4 ki te 96.
x=\frac{-2±10}{2\times 30}
Tuhia te pūtakerua o te 100.
x=\frac{-2±10}{60}
Whakareatia 2 ki te 30.
x=\frac{8}{60}
Nā, me whakaoti te whārite x=\frac{-2±10}{60} ina he tāpiri te ±. Tāpiri -2 ki te 10.
x=\frac{2}{15}
Whakahekea te hautanga \frac{8}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{12}{60}
Nā, me whakaoti te whārite x=\frac{-2±10}{60} ina he tango te ±. Tango 10 mai i -2.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{-12}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=\frac{2}{15} x=-\frac{1}{5}
Kua oti te whārite te whakatau.
30x^{2}+2x-0.8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
30x^{2}+2x-0.8-\left(-0.8\right)=-\left(-0.8\right)
Me tāpiri 0.8 ki ngā taha e rua o te whārite.
30x^{2}+2x=-\left(-0.8\right)
Mā te tango i te -0.8 i a ia ake anō ka toe ko te 0.
30x^{2}+2x=0.8
Tango -0.8 mai i 0.
\frac{30x^{2}+2x}{30}=\frac{0.8}{30}
Whakawehea ngā taha e rua ki te 30.
x^{2}+\frac{2}{30}x=\frac{0.8}{30}
Mā te whakawehe ki te 30 ka wetekia te whakareanga ki te 30.
x^{2}+\frac{1}{15}x=\frac{0.8}{30}
Whakahekea te hautanga \frac{2}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{15}x=\frac{2}{75}
Whakawehe 0.8 ki te 30.
x^{2}+\frac{1}{15}x+\left(\frac{1}{30}\right)^{2}=\frac{2}{75}+\left(\frac{1}{30}\right)^{2}
Whakawehea te \frac{1}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{30}. Nā, tāpiria te pūrua o te \frac{1}{30} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{15}x+\frac{1}{900}=\frac{2}{75}+\frac{1}{900}
Pūruatia \frac{1}{30} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{15}x+\frac{1}{900}=\frac{1}{36}
Tāpiri \frac{2}{75} ki te \frac{1}{900} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{30}\right)^{2}=\frac{1}{36}
Tauwehea x^{2}+\frac{1}{15}x+\frac{1}{900}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{30}\right)^{2}}=\sqrt{\frac{1}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{30}=\frac{1}{6} x+\frac{1}{30}=-\frac{1}{6}
Whakarūnātia.
x=\frac{2}{15} x=-\frac{1}{5}
Me tango \frac{1}{30} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}