Aromātai
25t^{3}
Kimi Pārōnaki e ai ki t
75t^{2}
Tohaina
Kua tāruatia ki te papatopenga
25t^{3}+9t^{3}-17t^{3}-\left(-8t^{3}\right)
Pahekotia te 30t^{3} me -5t^{3}, ka 25t^{3}.
34t^{3}-17t^{3}-\left(-8t^{3}\right)
Pahekotia te 25t^{3} me 9t^{3}, ka 34t^{3}.
17t^{3}-\left(-8t^{3}\right)
Pahekotia te 34t^{3} me -17t^{3}, ka 17t^{3}.
17t^{3}+8t^{3}
Ko te tauaro o -8t^{3} ko 8t^{3}.
25t^{3}
Pahekotia te 17t^{3} me 8t^{3}, ka 25t^{3}.
\frac{\mathrm{d}}{\mathrm{d}t}(25t^{3}+9t^{3}-17t^{3}-\left(-8t^{3}\right))
Pahekotia te 30t^{3} me -5t^{3}, ka 25t^{3}.
\frac{\mathrm{d}}{\mathrm{d}t}(34t^{3}-17t^{3}-\left(-8t^{3}\right))
Pahekotia te 25t^{3} me 9t^{3}, ka 34t^{3}.
\frac{\mathrm{d}}{\mathrm{d}t}(17t^{3}-\left(-8t^{3}\right))
Pahekotia te 34t^{3} me -17t^{3}, ka 17t^{3}.
\frac{\mathrm{d}}{\mathrm{d}t}(17t^{3}+8t^{3})
Ko te tauaro o -8t^{3} ko 8t^{3}.
\frac{\mathrm{d}}{\mathrm{d}t}(25t^{3})
Pahekotia te 17t^{3} me 8t^{3}, ka 25t^{3}.
3\times 25t^{3-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
75t^{3-1}
Whakareatia 3 ki te 25.
75t^{2}
Tango 1 mai i 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}