Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-19 ab=30\left(-63\right)=-1890
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 30s^{2}+as+bs-63. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-1890 2,-945 3,-630 5,-378 6,-315 7,-270 9,-210 10,-189 14,-135 15,-126 18,-105 21,-90 27,-70 30,-63 35,-54 42,-45
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -1890.
1-1890=-1889 2-945=-943 3-630=-627 5-378=-373 6-315=-309 7-270=-263 9-210=-201 10-189=-179 14-135=-121 15-126=-111 18-105=-87 21-90=-69 27-70=-43 30-63=-33 35-54=-19 42-45=-3
Tātaihia te tapeke mō ia takirua.
a=-54 b=35
Ko te otinga te takirua ka hoatu i te tapeke -19.
\left(30s^{2}-54s\right)+\left(35s-63\right)
Tuhia anō te 30s^{2}-19s-63 hei \left(30s^{2}-54s\right)+\left(35s-63\right).
6s\left(5s-9\right)+7\left(5s-9\right)
Tauwehea te 6s i te tuatahi me te 7 i te rōpū tuarua.
\left(5s-9\right)\left(6s+7\right)
Whakatauwehea atu te kīanga pātahi 5s-9 mā te whakamahi i te āhuatanga tātai tohatoha.
30s^{2}-19s-63=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 30\left(-63\right)}}{2\times 30}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-\left(-19\right)±\sqrt{361-4\times 30\left(-63\right)}}{2\times 30}
Pūrua -19.
s=\frac{-\left(-19\right)±\sqrt{361-120\left(-63\right)}}{2\times 30}
Whakareatia -4 ki te 30.
s=\frac{-\left(-19\right)±\sqrt{361+7560}}{2\times 30}
Whakareatia -120 ki te -63.
s=\frac{-\left(-19\right)±\sqrt{7921}}{2\times 30}
Tāpiri 361 ki te 7560.
s=\frac{-\left(-19\right)±89}{2\times 30}
Tuhia te pūtakerua o te 7921.
s=\frac{19±89}{2\times 30}
Ko te tauaro o -19 ko 19.
s=\frac{19±89}{60}
Whakareatia 2 ki te 30.
s=\frac{108}{60}
Nā, me whakaoti te whārite s=\frac{19±89}{60} ina he tāpiri te ±. Tāpiri 19 ki te 89.
s=\frac{9}{5}
Whakahekea te hautanga \frac{108}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
s=-\frac{70}{60}
Nā, me whakaoti te whārite s=\frac{19±89}{60} ina he tango te ±. Tango 89 mai i 19.
s=-\frac{7}{6}
Whakahekea te hautanga \frac{-70}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
30s^{2}-19s-63=30\left(s-\frac{9}{5}\right)\left(s-\left(-\frac{7}{6}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{9}{5} mō te x_{1} me te -\frac{7}{6} mō te x_{2}.
30s^{2}-19s-63=30\left(s-\frac{9}{5}\right)\left(s+\frac{7}{6}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
30s^{2}-19s-63=30\times \frac{5s-9}{5}\left(s+\frac{7}{6}\right)
Tango \frac{9}{5} mai i s mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
30s^{2}-19s-63=30\times \frac{5s-9}{5}\times \frac{6s+7}{6}
Tāpiri \frac{7}{6} ki te s mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
30s^{2}-19s-63=30\times \frac{\left(5s-9\right)\left(6s+7\right)}{5\times 6}
Whakareatia \frac{5s-9}{5} ki te \frac{6s+7}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
30s^{2}-19s-63=30\times \frac{\left(5s-9\right)\left(6s+7\right)}{30}
Whakareatia 5 ki te 6.
30s^{2}-19s-63=\left(5s-9\right)\left(6s+7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 30 i roto i te 30 me te 30.