Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(30-\left(x+1\right)-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(30-x-1-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
\left(29-x-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Tangohia te 1 i te 30, ka 29.
\left(29-x-16+x\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Hei kimi i te tauaro o 16-x, kimihia te tauaro o ia taurangi.
\left(13-x+x\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Tangohia te 16 i te 29, ka 13.
13^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Pahekotia te -x me x, ka 0.
169=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Tātaihia te 13 mā te pū o 2, kia riro ko 169.
169=\left(\sqrt{x^{2}+2x+1+\left(16-x\right)^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
169=\left(\sqrt{x^{2}+2x+1+256-32x+x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(16-x\right)^{2}.
169=\left(\sqrt{x^{2}+2x+257-32x+x^{2}}\right)^{2}
Tāpirihia te 1 ki te 256, ka 257.
169=\left(\sqrt{x^{2}-30x+257+x^{2}}\right)^{2}
Pahekotia te 2x me -32x, ka -30x.
169=\left(\sqrt{2x^{2}-30x+257}\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
169=2x^{2}-30x+257
Tātaihia te \sqrt{2x^{2}-30x+257} mā te pū o 2, kia riro ko 2x^{2}-30x+257.
2x^{2}-30x+257=169
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}-30x+257-169=0
Tangohia te 169 mai i ngā taha e rua.
2x^{2}-30x+88=0
Tangohia te 169 i te 257, ka 88.
x^{2}-15x+44=0
Whakawehea ngā taha e rua ki te 2.
a+b=-15 ab=1\times 44=44
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+44. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-44 -2,-22 -4,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 44.
-1-44=-45 -2-22=-24 -4-11=-15
Tātaihia te tapeke mō ia takirua.
a=-11 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -15.
\left(x^{2}-11x\right)+\left(-4x+44\right)
Tuhia anō te x^{2}-15x+44 hei \left(x^{2}-11x\right)+\left(-4x+44\right).
x\left(x-11\right)-4\left(x-11\right)
Tauwehea te x i te tuatahi me te -4 i te rōpū tuarua.
\left(x-11\right)\left(x-4\right)
Whakatauwehea atu te kīanga pātahi x-11 mā te whakamahi i te āhuatanga tātai tohatoha.
x=11 x=4
Hei kimi otinga whārite, me whakaoti te x-11=0 me te x-4=0.
30-\left(11+1\right)-\left(16-11\right)=\sqrt{\left(11+1\right)^{2}+\left(16-11\right)^{2}}
Whakakapia te 11 mō te x i te whārite 30-\left(x+1\right)-\left(16-x\right)=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}.
13=13
Whakarūnātia. Ko te uara x=11 kua ngata te whārite.
30-\left(4+1\right)-\left(16-4\right)=\sqrt{\left(4+1\right)^{2}+\left(16-4\right)^{2}}
Whakakapia te 4 mō te x i te whārite 30-\left(x+1\right)-\left(16-x\right)=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}.
13=13
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=11 x=4
Rārangihia ngā rongoā katoa o -\left(x+1\right)-\left(16-x\right)+30=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}.