Aromātai
\frac{1088}{15}\approx 72.533333333
Tauwehe
\frac{2 ^ {6} \cdot 17}{3 \cdot 5} = 72\frac{8}{15} = 72.53333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{150+1}{5}+\frac{42\times 6+2}{6}
Whakareatia te 30 ki te 5, ka 150.
\frac{151}{5}+\frac{42\times 6+2}{6}
Tāpirihia te 150 ki te 1, ka 151.
\frac{151}{5}+\frac{252+2}{6}
Whakareatia te 42 ki te 6, ka 252.
\frac{151}{5}+\frac{254}{6}
Tāpirihia te 252 ki te 2, ka 254.
\frac{151}{5}+\frac{127}{3}
Whakahekea te hautanga \frac{254}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{453}{15}+\frac{635}{15}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{151}{5} me \frac{127}{3} ki te hautau me te tautūnga 15.
\frac{453+635}{15}
Tā te mea he rite te tauraro o \frac{453}{15} me \frac{635}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1088}{15}
Tāpirihia te 453 ki te 635, ka 1088.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}