Whakaoti mō x
x=24
x=-24
Graph
Tohaina
Kua tāruatia ki te papatopenga
900=18^{2}+x^{2}
Tātaihia te 30 mā te pū o 2, kia riro ko 900.
900=324+x^{2}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
324+x^{2}=900
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
324+x^{2}-900=0
Tangohia te 900 mai i ngā taha e rua.
-576+x^{2}=0
Tangohia te 900 i te 324, ka -576.
\left(x-24\right)\left(x+24\right)=0
Whakaarohia te -576+x^{2}. Tuhia anō te -576+x^{2} hei x^{2}-24^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=24 x=-24
Hei kimi otinga whārite, me whakaoti te x-24=0 me te x+24=0.
900=18^{2}+x^{2}
Tātaihia te 30 mā te pū o 2, kia riro ko 900.
900=324+x^{2}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
324+x^{2}=900
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=900-324
Tangohia te 324 mai i ngā taha e rua.
x^{2}=576
Tangohia te 324 i te 900, ka 576.
x=24 x=-24
Tuhia te pūtakerua o ngā taha e rua o te whārite.
900=18^{2}+x^{2}
Tātaihia te 30 mā te pū o 2, kia riro ko 900.
900=324+x^{2}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
324+x^{2}=900
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
324+x^{2}-900=0
Tangohia te 900 mai i ngā taha e rua.
-576+x^{2}=0
Tangohia te 900 i te 324, ka -576.
x^{2}-576=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-576\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -576 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-576\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{2304}}{2}
Whakareatia -4 ki te -576.
x=\frac{0±48}{2}
Tuhia te pūtakerua o te 2304.
x=24
Nā, me whakaoti te whārite x=\frac{0±48}{2} ina he tāpiri te ±. Whakawehe 48 ki te 2.
x=-24
Nā, me whakaoti te whārite x=\frac{0±48}{2} ina he tango te ±. Whakawehe -48 ki te 2.
x=24 x=-24
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}