Tauwehe
\left(6-x\right)\left(3x+5\right)
Aromātai
\left(6-x\right)\left(3x+5\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x^{2}+13x+30
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=13 ab=-3\times 30=-90
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -3x^{2}+ax+bx+30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Tātaihia te tapeke mō ia takirua.
a=18 b=-5
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(-3x^{2}+18x\right)+\left(-5x+30\right)
Tuhia anō te -3x^{2}+13x+30 hei \left(-3x^{2}+18x\right)+\left(-5x+30\right).
3x\left(-x+6\right)+5\left(-x+6\right)
Tauwehea te 3x i te tuatahi me te 5 i te rōpū tuarua.
\left(-x+6\right)\left(3x+5\right)
Whakatauwehea atu te kīanga pātahi -x+6 mā te whakamahi i te āhuatanga tātai tohatoha.
-3x^{2}+13x+30=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\left(-3\right)\times 30}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-13±\sqrt{169-4\left(-3\right)\times 30}}{2\left(-3\right)}
Pūrua 13.
x=\frac{-13±\sqrt{169+12\times 30}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-13±\sqrt{169+360}}{2\left(-3\right)}
Whakareatia 12 ki te 30.
x=\frac{-13±\sqrt{529}}{2\left(-3\right)}
Tāpiri 169 ki te 360.
x=\frac{-13±23}{2\left(-3\right)}
Tuhia te pūtakerua o te 529.
x=\frac{-13±23}{-6}
Whakareatia 2 ki te -3.
x=\frac{10}{-6}
Nā, me whakaoti te whārite x=\frac{-13±23}{-6} ina he tāpiri te ±. Tāpiri -13 ki te 23.
x=-\frac{5}{3}
Whakahekea te hautanga \frac{10}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{36}{-6}
Nā, me whakaoti te whārite x=\frac{-13±23}{-6} ina he tango te ±. Tango 23 mai i -13.
x=6
Whakawehe -36 ki te -6.
-3x^{2}+13x+30=-3\left(x-\left(-\frac{5}{3}\right)\right)\left(x-6\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{5}{3} mō te x_{1} me te 6 mō te x_{2}.
-3x^{2}+13x+30=-3\left(x+\frac{5}{3}\right)\left(x-6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-3x^{2}+13x+30=-3\times \frac{-3x-5}{-3}\left(x-6\right)
Tāpiri \frac{5}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-3x^{2}+13x+30=\left(-3x-5\right)\left(x-6\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te -3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}