30 + ( 0825 \times 30 ) + ( 15 \% \times 30 ) =
Aromātai
\frac{69}{2}=34.5
Tauwehe
\frac{3 \cdot 23}{2} = 34\frac{1}{2} = 34.5
Tohaina
Kua tāruatia ki te papatopenga
30+0\times 30+\frac{15}{100}\times 30
Whakareatia te 0 ki te 825, ka 0.
30+0+\frac{15}{100}\times 30
Whakareatia te 0 ki te 30, ka 0.
30+\frac{15}{100}\times 30
Tāpirihia te 30 ki te 0, ka 30.
30+\frac{3}{20}\times 30
Whakahekea te hautanga \frac{15}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
30+\frac{3\times 30}{20}
Tuhia te \frac{3}{20}\times 30 hei hautanga kotahi.
30+\frac{90}{20}
Whakareatia te 3 ki te 30, ka 90.
30+\frac{9}{2}
Whakahekea te hautanga \frac{90}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{60}{2}+\frac{9}{2}
Me tahuri te 30 ki te hautau \frac{60}{2}.
\frac{60+9}{2}
Tā te mea he rite te tauraro o \frac{60}{2} me \frac{9}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{69}{2}
Tāpirihia te 60 ki te 9, ka 69.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}