Aromātai
\frac{145}{4}=36.25
Tauwehe
\frac{5 \cdot 29}{2 ^ {2}} = 36\frac{1}{4} = 36.25
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
30 + \frac { 15 - 10 } { 2 \times 15 - 10 - 12 } \times 10
Tohaina
Kua tāruatia ki te papatopenga
30+\frac{5}{2\times 15-10-12}\times 10
Tangohia te 10 i te 15, ka 5.
30+\frac{5}{30-10-12}\times 10
Whakareatia te 2 ki te 15, ka 30.
30+\frac{5}{20-12}\times 10
Tangohia te 10 i te 30, ka 20.
30+\frac{5}{8}\times 10
Tangohia te 12 i te 20, ka 8.
30+\frac{5\times 10}{8}
Tuhia te \frac{5}{8}\times 10 hei hautanga kotahi.
30+\frac{50}{8}
Whakareatia te 5 ki te 10, ka 50.
30+\frac{25}{4}
Whakahekea te hautanga \frac{50}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{120}{4}+\frac{25}{4}
Me tahuri te 30 ki te hautau \frac{120}{4}.
\frac{120+25}{4}
Tā te mea he rite te tauraro o \frac{120}{4} me \frac{25}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{145}{4}
Tāpirihia te 120 ki te 25, ka 145.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}