Aromātai
-1.98
Tauwehe
-1.98
Tohaina
Kua tāruatia ki te papatopenga
\frac{3.6}{\frac{25+1}{5}-7}+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Whakareatia te 5 ki te 5, ka 25.
\frac{3.6}{\frac{26}{5}-7}+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Tāpirihia te 25 ki te 1, ka 26.
\frac{3.6}{\frac{26}{5}-\frac{35}{5}}+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Me tahuri te 7 ki te hautau \frac{35}{5}.
\frac{3.6}{\frac{26-35}{5}}+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Tā te mea he rite te tauraro o \frac{26}{5} me \frac{35}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{3.6}{-\frac{9}{5}}+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Tangohia te 35 i te 26, ka -9.
3.6\left(-\frac{5}{9}\right)+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Whakawehe 3.6 ki te -\frac{9}{5} mā te whakarea 3.6 ki te tau huripoki o -\frac{9}{5}.
\frac{18}{5}\left(-\frac{5}{9}\right)+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Me tahuri ki tau ā-ira 3.6 ki te hautau \frac{36}{10}. Whakahekea te hautanga \frac{36}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{18\left(-5\right)}{5\times 9}+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Me whakarea te \frac{18}{5} ki te -\frac{5}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-90}{45}+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Mahia ngā whakarea i roto i te hautanga \frac{18\left(-5\right)}{5\times 9}.
-2+\left(\frac{1}{2}\right)^{3}\times 0.4^{2}
Whakawehea te -90 ki te 45, kia riro ko -2.
-2+\frac{1}{8}\times 0.4^{2}
Tātaihia te \frac{1}{2} mā te pū o 3, kia riro ko \frac{1}{8}.
-2+\frac{1}{8}\times 0.16
Tātaihia te 0.4 mā te pū o 2, kia riro ko 0.16.
-2+\frac{1}{8}\times \frac{4}{25}
Me tahuri ki tau ā-ira 0.16 ki te hautau \frac{16}{100}. Whakahekea te hautanga \frac{16}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-2+\frac{1\times 4}{8\times 25}
Me whakarea te \frac{1}{8} ki te \frac{4}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-2+\frac{4}{200}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 4}{8\times 25}.
-2+\frac{1}{50}
Whakahekea te hautanga \frac{4}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-\frac{100}{50}+\frac{1}{50}
Me tahuri te -2 ki te hautau -\frac{100}{50}.
\frac{-100+1}{50}
Tā te mea he rite te tauraro o -\frac{100}{50} me \frac{1}{50}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{99}{50}
Tāpirihia te -100 ki te 1, ka -99.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}