Whakaoti mō b
b=14
Tohaina
Kua tāruatia ki te papatopenga
7=2\left(-\frac{3\sqrt{7}}{2}\right)\sqrt{7}+2b
Whakareatia ngā taha e rua o te whārite ki te 2.
7=\frac{-2\times 3\sqrt{7}}{2}\sqrt{7}+2b
Tuhia te 2\left(-\frac{3\sqrt{7}}{2}\right) hei hautanga kotahi.
7=-3\sqrt{7}\sqrt{7}+2b
Me whakakore te 2 me te 2.
7=-3\times 7+2b
Whakareatia te \sqrt{7} ki te \sqrt{7}, ka 7.
7=-21+2b
Whakareatia te -3 ki te 7, ka -21.
-21+2b=7
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2b=7+21
Me tāpiri te 21 ki ngā taha e rua.
2b=28
Tāpirihia te 7 ki te 21, ka 28.
b=\frac{28}{2}
Whakawehea ngā taha e rua ki te 2.
b=14
Whakawehea te 28 ki te 2, kia riro ko 14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}