3-(5-(2-(2+5 \div 7 \times 3
Aromātai
-\frac{29}{7}\approx -4.142857143
Tauwehe
-\frac{29}{7} = -4\frac{1}{7} = -4.142857142857143
Pātaitai
3-(5-(2-(2+5 \div 7 \times 3
Tohaina
Kua tāruatia ki te papatopenga
3-\left(5-\left(2-\left(2+\frac{5\times 3}{7}\right)\right)\right)
Tuhia te \frac{5}{7}\times 3 hei hautanga kotahi.
3-\left(5-\left(2-\left(2+\frac{15}{7}\right)\right)\right)
Whakareatia te 5 ki te 3, ka 15.
3-\left(5-\left(2-\left(\frac{14}{7}+\frac{15}{7}\right)\right)\right)
Me tahuri te 2 ki te hautau \frac{14}{7}.
3-\left(5-\left(2-\frac{14+15}{7}\right)\right)
Tā te mea he rite te tauraro o \frac{14}{7} me \frac{15}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3-\left(5-\left(2-\frac{29}{7}\right)\right)
Tāpirihia te 14 ki te 15, ka 29.
3-\left(5-\left(\frac{14}{7}-\frac{29}{7}\right)\right)
Me tahuri te 2 ki te hautau \frac{14}{7}.
3-\left(5-\frac{14-29}{7}\right)
Tā te mea he rite te tauraro o \frac{14}{7} me \frac{29}{7}, me tango rāua mā te tango i ō raua taurunga.
3-\left(5-\left(-\frac{15}{7}\right)\right)
Tangohia te 29 i te 14, ka -15.
3-\left(5+\frac{15}{7}\right)
Ko te tauaro o -\frac{15}{7} ko \frac{15}{7}.
3-\left(\frac{35}{7}+\frac{15}{7}\right)
Me tahuri te 5 ki te hautau \frac{35}{7}.
3-\frac{35+15}{7}
Tā te mea he rite te tauraro o \frac{35}{7} me \frac{15}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3-\frac{50}{7}
Tāpirihia te 35 ki te 15, ka 50.
\frac{21}{7}-\frac{50}{7}
Me tahuri te 3 ki te hautau \frac{21}{7}.
\frac{21-50}{7}
Tā te mea he rite te tauraro o \frac{21}{7} me \frac{50}{7}, me tango rāua mā te tango i ō raua taurunga.
-\frac{29}{7}
Tangohia te 50 i te 21, ka -29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}