Aromātai
\frac{17}{8}=2.125
Tauwehe
\frac{17}{2 ^ {3}} = 2\frac{1}{8} = 2.125
Tohaina
Kua tāruatia ki te papatopenga
3-\frac{\left(1\times 12+11\right)\times 21}{12\left(2\times 21+4\right)}
Whakawehe \frac{1\times 12+11}{12} ki te \frac{2\times 21+4}{21} mā te whakarea \frac{1\times 12+11}{12} ki te tau huripoki o \frac{2\times 21+4}{21}.
3-\frac{7\left(11+12\right)}{4\left(4+2\times 21\right)}
Me whakakore tahi te 3 i te taurunga me te tauraro.
3-\frac{7\times 23}{4\left(4+2\times 21\right)}
Tāpirihia te 11 ki te 12, ka 23.
3-\frac{161}{4\left(4+2\times 21\right)}
Whakareatia te 7 ki te 23, ka 161.
3-\frac{161}{4\left(4+42\right)}
Whakareatia te 2 ki te 21, ka 42.
3-\frac{161}{4\times 46}
Tāpirihia te 4 ki te 42, ka 46.
3-\frac{161}{184}
Whakareatia te 4 ki te 46, ka 184.
3-\frac{7}{8}
Whakahekea te hautanga \frac{161}{184} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 23.
\frac{24}{8}-\frac{7}{8}
Me tahuri te 3 ki te hautau \frac{24}{8}.
\frac{24-7}{8}
Tā te mea he rite te tauraro o \frac{24}{8} me \frac{7}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{17}{8}
Tangohia te 7 i te 24, ka 17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}