Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{1-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 1+\sqrt{5}.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{1-5}
Pūrua 1. Pūrua \sqrt{5}.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{-4}
Tangohia te 5 i te 1, ka -4.
3-\frac{\sqrt{2}+\sqrt{2}\sqrt{5}}{-4}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{2} ki te 1+\sqrt{5}.
3-\frac{\sqrt{2}+\sqrt{10}}{-4}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
3-\frac{-\sqrt{2}-\sqrt{10}}{4}
Me whakarea tahi te taurunga me te tauraro ki te -1.
\frac{3\times 4}{4}-\frac{-\sqrt{2}-\sqrt{10}}{4}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{4}{4}.
\frac{3\times 4-\left(-\sqrt{2}-\sqrt{10}\right)}{4}
Tā te mea he rite te tauraro o \frac{3\times 4}{4} me \frac{-\sqrt{2}-\sqrt{10}}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{12+\sqrt{2}+\sqrt{10}}{4}
Mahia ngā whakarea i roto o 3\times 4-\left(-\sqrt{2}-\sqrt{10}\right).