Whakaoti mō y
y = \frac{74}{11} = 6\frac{8}{11} \approx 6.727272727
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y-18+4\left(-4-y\right)=-12\left(y-3\right)+4
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-6.
3y-18-16-4y=-12\left(y-3\right)+4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te -4-y.
3y-34-4y=-12\left(y-3\right)+4
Tangohia te 16 i te -18, ka -34.
-y-34=-12\left(y-3\right)+4
Pahekotia te 3y me -4y, ka -y.
-y-34=-12y+36+4
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te y-3.
-y-34=-12y+40
Tāpirihia te 36 ki te 4, ka 40.
-y-34+12y=40
Me tāpiri te 12y ki ngā taha e rua.
11y-34=40
Pahekotia te -y me 12y, ka 11y.
11y=40+34
Me tāpiri te 34 ki ngā taha e rua.
11y=74
Tāpirihia te 40 ki te 34, ka 74.
y=\frac{74}{11}
Whakawehea ngā taha e rua ki te 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}