Whakaoti mō x
x=-\frac{1}{11}\approx -0.090909091
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-24-5\left(7x-6\right)=6\left(3x+2\right)-5\left(6x+1\right)-9x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-8.
3x-24-35x+30=6\left(3x+2\right)-5\left(6x+1\right)-9x
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 7x-6.
-32x-24+30=6\left(3x+2\right)-5\left(6x+1\right)-9x
Pahekotia te 3x me -35x, ka -32x.
-32x+6=6\left(3x+2\right)-5\left(6x+1\right)-9x
Tāpirihia te -24 ki te 30, ka 6.
-32x+6=18x+12-5\left(6x+1\right)-9x
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 3x+2.
-32x+6=18x+12-30x-5-9x
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 6x+1.
-32x+6=-12x+12-5-9x
Pahekotia te 18x me -30x, ka -12x.
-32x+6=-12x+7-9x
Tangohia te 5 i te 12, ka 7.
-32x+6=-21x+7
Pahekotia te -12x me -9x, ka -21x.
-32x+6+21x=7
Me tāpiri te 21x ki ngā taha e rua.
-11x+6=7
Pahekotia te -32x me 21x, ka -11x.
-11x=7-6
Tangohia te 6 mai i ngā taha e rua.
-11x=1
Tangohia te 6 i te 7, ka 1.
x=\frac{1}{-11}
Whakawehea ngā taha e rua ki te -11.
x=-\frac{1}{11}
Ka taea te hautanga \frac{1}{-11} te tuhi anō ko -\frac{1}{11} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}