Whakaoti mō x
x=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-12-4\left(x-3\right)=x+3-\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-4.
3x-12-4x+12=x+3-\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-3.
-x-12+12=x+3-\left(x-2\right)
Pahekotia te 3x me -4x, ka -x.
-x=x+3-\left(x-2\right)
Tāpirihia te -12 ki te 12, ka 0.
-x=x+3-x-\left(-2\right)
Hei kimi i te tauaro o x-2, kimihia te tauaro o ia taurangi.
-x=x+3-x+2
Ko te tauaro o -2 ko 2.
-x=3+2
Pahekotia te x me -x, ka 0.
-x=5
Tāpirihia te 3 ki te 2, ka 5.
x=-5
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}