Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3x+6\right)\left(x-2\right)=x-4+8x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x^{2}-12=x-4+8x
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+6 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-12=9x-4
Pahekotia te x me 8x, ka 9x.
3x^{2}-12-9x=-4
Tangohia te 9x mai i ngā taha e rua.
3x^{2}-12-9x+4=0
Me tāpiri te 4 ki ngā taha e rua.
3x^{2}-8-9x=0
Tāpirihia te -12 ki te 4, ka -8.
3x^{2}-9x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -9 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\left(-8\right)}}{2\times 3}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-12\left(-8\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-9\right)±\sqrt{81+96}}{2\times 3}
Whakareatia -12 ki te -8.
x=\frac{-\left(-9\right)±\sqrt{177}}{2\times 3}
Tāpiri 81 ki te 96.
x=\frac{9±\sqrt{177}}{2\times 3}
Ko te tauaro o -9 ko 9.
x=\frac{9±\sqrt{177}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{177}+9}{6}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{177}}{6} ina he tāpiri te ±. Tāpiri 9 ki te \sqrt{177}.
x=\frac{\sqrt{177}}{6}+\frac{3}{2}
Whakawehe 9+\sqrt{177} ki te 6.
x=\frac{9-\sqrt{177}}{6}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{177}}{6} ina he tango te ±. Tango \sqrt{177} mai i 9.
x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
Whakawehe 9-\sqrt{177} ki te 6.
x=\frac{\sqrt{177}}{6}+\frac{3}{2} x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
Kua oti te whārite te whakatau.
\left(3x+6\right)\left(x-2\right)=x-4+8x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x^{2}-12=x-4+8x
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+6 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-12=9x-4
Pahekotia te x me 8x, ka 9x.
3x^{2}-12-9x=-4
Tangohia te 9x mai i ngā taha e rua.
3x^{2}-9x=-4+12
Me tāpiri te 12 ki ngā taha e rua.
3x^{2}-9x=8
Tāpirihia te -4 ki te 12, ka 8.
\frac{3x^{2}-9x}{3}=\frac{8}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{9}{3}\right)x=\frac{8}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-3x=\frac{8}{3}
Whakawehe -9 ki te 3.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{8}{3}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{8}{3}+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{59}{12}
Tāpiri \frac{8}{3} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=\frac{59}{12}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{59}{12}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{177}}{6} x-\frac{3}{2}=-\frac{\sqrt{177}}{6}
Whakarūnātia.
x=\frac{\sqrt{177}}{6}+\frac{3}{2} x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.