Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x\left(\frac{1}{3}+x\right)=9x-1
Whakareatia te 3 ki te 3, ka 9.
9x\times \frac{1}{3}+9x^{2}=9x-1
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te \frac{1}{3}+x.
\frac{9}{3}x+9x^{2}=9x-1
Whakareatia te 9 ki te \frac{1}{3}, ka \frac{9}{3}.
3x+9x^{2}=9x-1
Whakawehea te 9 ki te 3, kia riro ko 3.
3x+9x^{2}-9x=-1
Tangohia te 9x mai i ngā taha e rua.
-6x+9x^{2}=-1
Pahekotia te 3x me -9x, ka -6x.
-6x+9x^{2}+1=0
Me tāpiri te 1 ki ngā taha e rua.
9x^{2}-6x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -6 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2\times 9}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\times 9}
Tāpiri 36 ki te -36.
x=-\frac{-6}{2\times 9}
Tuhia te pūtakerua o te 0.
x=\frac{6}{2\times 9}
Ko te tauaro o -6 ko 6.
x=\frac{6}{18}
Whakareatia 2 ki te 9.
x=\frac{1}{3}
Whakahekea te hautanga \frac{6}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9x\left(\frac{1}{3}+x\right)=9x-1
Whakareatia te 3 ki te 3, ka 9.
9x\times \frac{1}{3}+9x^{2}=9x-1
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te \frac{1}{3}+x.
\frac{9}{3}x+9x^{2}=9x-1
Whakareatia te 9 ki te \frac{1}{3}, ka \frac{9}{3}.
3x+9x^{2}=9x-1
Whakawehea te 9 ki te 3, kia riro ko 3.
3x+9x^{2}-9x=-1
Tangohia te 9x mai i ngā taha e rua.
-6x+9x^{2}=-1
Pahekotia te 3x me -9x, ka -6x.
9x^{2}-6x=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{9x^{2}-6x}{9}=-\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{6}{9}\right)x=-\frac{1}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-\frac{2}{3}x=-\frac{1}{9}
Whakahekea te hautanga \frac{-6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=0
Tāpiri -\frac{1}{9} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{3}\right)^{2}=0
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=0 x-\frac{1}{3}=0
Whakarūnātia.
x=\frac{1}{3} x=\frac{1}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.
x=\frac{1}{3}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.