Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x+15=6\left(7x+6\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x+5.
9x+15=42x+36+1
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 7x+6.
9x+15=42x+37
Tāpirihia te 36 ki te 1, ka 37.
9x+15-42x=37
Tangohia te 42x mai i ngā taha e rua.
-33x+15=37
Pahekotia te 9x me -42x, ka -33x.
-33x=37-15
Tangohia te 15 mai i ngā taha e rua.
-33x=22
Tangohia te 15 i te 37, ka 22.
x=\frac{22}{-33}
Whakawehea ngā taha e rua ki te -33.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{22}{-33} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}