Whakaoti mō x
x = \frac{71}{5} = 14\frac{1}{5} = 14.2
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
3(1-x)+2x= \frac{ 2 }{ 5 } (-2x+ \frac{ 4 }{ 10 } )
Tohaina
Kua tāruatia ki te papatopenga
3-3x+2x=\frac{2}{5}\left(-2x+\frac{4}{10}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1-x.
3-x=\frac{2}{5}\left(-2x+\frac{4}{10}\right)
Pahekotia te -3x me 2x, ka -x.
3-x=\frac{2}{5}\left(-2x+\frac{2}{5}\right)
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3-x=\frac{2}{5}\left(-2\right)x+\frac{2}{5}\times \frac{2}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{5} ki te -2x+\frac{2}{5}.
3-x=\frac{2\left(-2\right)}{5}x+\frac{2}{5}\times \frac{2}{5}
Tuhia te \frac{2}{5}\left(-2\right) hei hautanga kotahi.
3-x=\frac{-4}{5}x+\frac{2}{5}\times \frac{2}{5}
Whakareatia te 2 ki te -2, ka -4.
3-x=-\frac{4}{5}x+\frac{2}{5}\times \frac{2}{5}
Ka taea te hautanga \frac{-4}{5} te tuhi anō ko -\frac{4}{5} mā te tango i te tohu tōraro.
3-x=-\frac{4}{5}x+\frac{2\times 2}{5\times 5}
Me whakarea te \frac{2}{5} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
3-x=-\frac{4}{5}x+\frac{4}{25}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 2}{5\times 5}.
3-x+\frac{4}{5}x=\frac{4}{25}
Me tāpiri te \frac{4}{5}x ki ngā taha e rua.
3-\frac{1}{5}x=\frac{4}{25}
Pahekotia te -x me \frac{4}{5}x, ka -\frac{1}{5}x.
-\frac{1}{5}x=\frac{4}{25}-3
Tangohia te 3 mai i ngā taha e rua.
-\frac{1}{5}x=\frac{4}{25}-\frac{75}{25}
Me tahuri te 3 ki te hautau \frac{75}{25}.
-\frac{1}{5}x=\frac{4-75}{25}
Tā te mea he rite te tauraro o \frac{4}{25} me \frac{75}{25}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{5}x=-\frac{71}{25}
Tangohia te 75 i te 4, ka -71.
x=-\frac{71}{25}\left(-5\right)
Me whakarea ngā taha e rua ki te -5, te tau utu o -\frac{1}{5}.
x=\frac{-71\left(-5\right)}{25}
Tuhia te -\frac{71}{25}\left(-5\right) hei hautanga kotahi.
x=\frac{355}{25}
Whakareatia te -71 ki te -5, ka 355.
x=\frac{71}{5}
Whakahekea te hautanga \frac{355}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}