Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3-3x+2x=\frac{2}{5}\left(-2x+\frac{4}{10}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1-x.
3-x=\frac{2}{5}\left(-2x+\frac{4}{10}\right)
Pahekotia te -3x me 2x, ka -x.
3-x=\frac{2}{5}\left(-2x+\frac{2}{5}\right)
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3-x=\frac{2}{5}\left(-2\right)x+\frac{2}{5}\times \frac{2}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{5} ki te -2x+\frac{2}{5}.
3-x=\frac{2\left(-2\right)}{5}x+\frac{2}{5}\times \frac{2}{5}
Tuhia te \frac{2}{5}\left(-2\right) hei hautanga kotahi.
3-x=\frac{-4}{5}x+\frac{2}{5}\times \frac{2}{5}
Whakareatia te 2 ki te -2, ka -4.
3-x=-\frac{4}{5}x+\frac{2}{5}\times \frac{2}{5}
Ka taea te hautanga \frac{-4}{5} te tuhi anō ko -\frac{4}{5} mā te tango i te tohu tōraro.
3-x=-\frac{4}{5}x+\frac{2\times 2}{5\times 5}
Me whakarea te \frac{2}{5} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
3-x=-\frac{4}{5}x+\frac{4}{25}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 2}{5\times 5}.
3-x+\frac{4}{5}x=\frac{4}{25}
Me tāpiri te \frac{4}{5}x ki ngā taha e rua.
3-\frac{1}{5}x=\frac{4}{25}
Pahekotia te -x me \frac{4}{5}x, ka -\frac{1}{5}x.
-\frac{1}{5}x=\frac{4}{25}-3
Tangohia te 3 mai i ngā taha e rua.
-\frac{1}{5}x=\frac{4}{25}-\frac{75}{25}
Me tahuri te 3 ki te hautau \frac{75}{25}.
-\frac{1}{5}x=\frac{4-75}{25}
Tā te mea he rite te tauraro o \frac{4}{25} me \frac{75}{25}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{5}x=-\frac{71}{25}
Tangohia te 75 i te 4, ka -71.
x=-\frac{71}{25}\left(-5\right)
Me whakarea ngā taha e rua ki te -5, te tau utu o -\frac{1}{5}.
x=\frac{-71\left(-5\right)}{25}
Tuhia te -\frac{71}{25}\left(-5\right) hei hautanga kotahi.
x=\frac{355}{25}
Whakareatia te -71 ki te -5, ka 355.
x=\frac{71}{5}
Whakahekea te hautanga \frac{355}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.