Whakaoti mō x
x = -\frac{13}{5} = -2\frac{3}{5} = -2.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3-3x=9+1+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te -1-x.
-3-3x=10+2x
Tāpirihia te 9 ki te 1, ka 10.
-3-3x-2x=10
Tangohia te 2x mai i ngā taha e rua.
-3-5x=10
Pahekotia te -3x me -2x, ka -5x.
-5x=10+3
Me tāpiri te 3 ki ngā taha e rua.
-5x=13
Tāpirihia te 10 ki te 3, ka 13.
x=\frac{13}{-5}
Whakawehea ngā taha e rua ki te -5.
x=-\frac{13}{5}
Ka taea te hautanga \frac{13}{-5} te tuhi anō ko -\frac{13}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}