Aromātai
\frac{2327}{28}\approx 83.107142857
Tauwehe
\frac{13 \cdot 179}{2 ^ {2} \cdot 7} = 83\frac{3}{28} = 83.10714285714286
Tohaina
Kua tāruatia ki te papatopenga
3\times \frac{533}{28}+3\times \frac{18\times 13}{27}
Whakareatia te 41 ki te 13, ka 533.
\frac{3\times 533}{28}+3\times \frac{18\times 13}{27}
Tuhia te 3\times \frac{533}{28} hei hautanga kotahi.
\frac{1599}{28}+3\times \frac{18\times 13}{27}
Whakareatia te 3 ki te 533, ka 1599.
\frac{1599}{28}+3\times \frac{234}{27}
Whakareatia te 18 ki te 13, ka 234.
\frac{1599}{28}+3\times \frac{26}{3}
Whakahekea te hautanga \frac{234}{27} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{1599}{28}+26
Me whakakore te 3 me te 3.
\frac{1599}{28}+\frac{728}{28}
Me tahuri te 26 ki te hautau \frac{728}{28}.
\frac{1599+728}{28}
Tā te mea he rite te tauraro o \frac{1599}{28} me \frac{728}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2327}{28}
Tāpirihia te 1599 ki te 728, ka 2327.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}