3,6 : ( 5 \frac { 1 } { 5 } - 7 ) + ( \frac { 1 } { 2 } ) ^ { 3 } \cdot 0,4 ^ { 2 } =
Kōmaka
-\frac{10}{3},3,16
Aromātai
3,-\frac{10}{3},16
Tohaina
Kua tāruatia ki te papatopenga
sort(3,\frac{6}{\frac{25+1}{5}-7}+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Whakareatia te 5 ki te 5, ka 25.
sort(3,\frac{6}{\frac{26}{5}-7}+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Tāpirihia te 25 ki te 1, ka 26.
sort(3,\frac{6}{\frac{26}{5}-\frac{35}{5}}+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Me tahuri te 7 ki te hautau \frac{35}{5}.
sort(3,\frac{6}{\frac{26-35}{5}}+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Tā te mea he rite te tauraro o \frac{26}{5} me \frac{35}{5}, me tango rāua mā te tango i ō raua taurunga.
sort(3,\frac{6}{-\frac{9}{5}}+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Tangohia te 35 i te 26, ka -9.
sort(3,6\left(-\frac{5}{9}\right)+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Whakawehe 6 ki te -\frac{9}{5} mā te whakarea 6 ki te tau huripoki o -\frac{9}{5}.
sort(3,\frac{6\left(-5\right)}{9}+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Tuhia te 6\left(-\frac{5}{9}\right) hei hautanga kotahi.
sort(3,\frac{-30}{9}+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Whakareatia te 6 ki te -5, ka -30.
sort(3,-\frac{10}{3}+\left(\frac{1}{2}\right)^{3}\times 0,4^{2})
Whakahekea te hautanga \frac{-30}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
sort(3,-\frac{10}{3}+\frac{1}{8}\times 0,4^{2})
Tātaihia te \frac{1}{2} mā te pū o 3, kia riro ko \frac{1}{8}.
sort(3,-\frac{10}{3}+0,4^{2})
Whakareatia te \frac{1}{8} ki te 0, ka 0.
sort(3,-\frac{10}{3},4^{2})
Tāpirihia te -\frac{10}{3} ki te 0, ka -\frac{10}{3}.
sort(3,-\frac{10}{3},16)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
3,-\frac{10}{3},16
Tahuritia ngā tau ā-ira i te rārangi 3,-\frac{10}{3},16 ki ngā hautanga.
3
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga 3 kotahi.
-\frac{10}{3},3
Me kōkuhu te -\frac{10}{3} ki te tauwāhi tika i te rārangi hōu.
-\frac{10}{3},3,16
Me kōkuhu te 16 ki te tauwāhi tika i te rārangi hōu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}