Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6+2m=-m^{2}+7m+2
Whakareatia ngā taha e rua o te whārite ki te 2.
6+2m+m^{2}=7m+2
Me tāpiri te m^{2} ki ngā taha e rua.
6+2m+m^{2}-7m=2
Tangohia te 7m mai i ngā taha e rua.
6-5m+m^{2}=2
Pahekotia te 2m me -7m, ka -5m.
6-5m+m^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
4-5m+m^{2}=0
Tangohia te 2 i te 6, ka 4.
m^{2}-5m+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=4
Hei whakaoti i te whārite, whakatauwehea te m^{2}-5m+4 mā te whakamahi i te tātai m^{2}+\left(a+b\right)m+ab=\left(m+a\right)\left(m+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(m-4\right)\left(m-1\right)
Me tuhi anō te kīanga whakatauwehe \left(m+a\right)\left(m+b\right) mā ngā uara i tātaihia.
m=4 m=1
Hei kimi otinga whārite, me whakaoti te m-4=0 me te m-1=0.
6+2m=-m^{2}+7m+2
Whakareatia ngā taha e rua o te whārite ki te 2.
6+2m+m^{2}=7m+2
Me tāpiri te m^{2} ki ngā taha e rua.
6+2m+m^{2}-7m=2
Tangohia te 7m mai i ngā taha e rua.
6-5m+m^{2}=2
Pahekotia te 2m me -7m, ka -5m.
6-5m+m^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
4-5m+m^{2}=0
Tangohia te 2 i te 6, ka 4.
m^{2}-5m+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=1\times 4=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei m^{2}+am+bm+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(m^{2}-4m\right)+\left(-m+4\right)
Tuhia anō te m^{2}-5m+4 hei \left(m^{2}-4m\right)+\left(-m+4\right).
m\left(m-4\right)-\left(m-4\right)
Tauwehea te m i te tuatahi me te -1 i te rōpū tuarua.
\left(m-4\right)\left(m-1\right)
Whakatauwehea atu te kīanga pātahi m-4 mā te whakamahi i te āhuatanga tātai tohatoha.
m=4 m=1
Hei kimi otinga whārite, me whakaoti te m-4=0 me te m-1=0.
6+2m=-m^{2}+7m+2
Whakareatia ngā taha e rua o te whārite ki te 2.
6+2m+m^{2}=7m+2
Me tāpiri te m^{2} ki ngā taha e rua.
6+2m+m^{2}-7m=2
Tangohia te 7m mai i ngā taha e rua.
6-5m+m^{2}=2
Pahekotia te 2m me -7m, ka -5m.
6-5m+m^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
4-5m+m^{2}=0
Tangohia te 2 i te 6, ka 4.
m^{2}-5m+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Pūrua -5.
m=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Whakareatia -4 ki te 4.
m=\frac{-\left(-5\right)±\sqrt{9}}{2}
Tāpiri 25 ki te -16.
m=\frac{-\left(-5\right)±3}{2}
Tuhia te pūtakerua o te 9.
m=\frac{5±3}{2}
Ko te tauaro o -5 ko 5.
m=\frac{8}{2}
Nā, me whakaoti te whārite m=\frac{5±3}{2} ina he tāpiri te ±. Tāpiri 5 ki te 3.
m=4
Whakawehe 8 ki te 2.
m=\frac{2}{2}
Nā, me whakaoti te whārite m=\frac{5±3}{2} ina he tango te ±. Tango 3 mai i 5.
m=1
Whakawehe 2 ki te 2.
m=4 m=1
Kua oti te whārite te whakatau.
6+2m=-m^{2}+7m+2
Whakareatia ngā taha e rua o te whārite ki te 2.
6+2m+m^{2}=7m+2
Me tāpiri te m^{2} ki ngā taha e rua.
6+2m+m^{2}-7m=2
Tangohia te 7m mai i ngā taha e rua.
6-5m+m^{2}=2
Pahekotia te 2m me -7m, ka -5m.
-5m+m^{2}=2-6
Tangohia te 6 mai i ngā taha e rua.
-5m+m^{2}=-4
Tangohia te 6 i te 2, ka -4.
m^{2}-5m=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-5m+\frac{25}{4}=-4+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-5m+\frac{25}{4}=\frac{9}{4}
Tāpiri -4 ki te \frac{25}{4}.
\left(m-\frac{5}{2}\right)^{2}=\frac{9}{4}
Tauwehea m^{2}-5m+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{5}{2}=\frac{3}{2} m-\frac{5}{2}=-\frac{3}{2}
Whakarūnātia.
m=4 m=1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.