Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z\left(3z-2\right)
Tauwehea te z.
3z^{2}-2z=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-2\right)±2}{2\times 3}
Tuhia te pūtakerua o te \left(-2\right)^{2}.
z=\frac{2±2}{2\times 3}
Ko te tauaro o -2 ko 2.
z=\frac{2±2}{6}
Whakareatia 2 ki te 3.
z=\frac{4}{6}
Nā, me whakaoti te whārite z=\frac{2±2}{6} ina he tāpiri te ±. Tāpiri 2 ki te 2.
z=\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
z=\frac{0}{6}
Nā, me whakaoti te whārite z=\frac{2±2}{6} ina he tango te ±. Tango 2 mai i 2.
z=0
Whakawehe 0 ki te 6.
3z^{2}-2z=3\left(z-\frac{2}{3}\right)z
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{3} mō te x_{1} me te 0 mō te x_{2}.
3z^{2}-2z=3\times \frac{3z-2}{3}z
Tango \frac{2}{3} mai i z mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3z^{2}-2z=\left(3z-2\right)z
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.