Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=16 ab=3\times 20=60
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3z^{2}+az+bz+20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,60 2,30 3,20 4,15 5,12 6,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Tātaihia te tapeke mō ia takirua.
a=6 b=10
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(3z^{2}+6z\right)+\left(10z+20\right)
Tuhia anō te 3z^{2}+16z+20 hei \left(3z^{2}+6z\right)+\left(10z+20\right).
3z\left(z+2\right)+10\left(z+2\right)
Tauwehea te 3z i te tuatahi me te 10 i te rōpū tuarua.
\left(z+2\right)\left(3z+10\right)
Whakatauwehea atu te kīanga pātahi z+2 mā te whakamahi i te āhuatanga tātai tohatoha.
3z^{2}+16z+20=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-16±\sqrt{16^{2}-4\times 3\times 20}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-16±\sqrt{256-4\times 3\times 20}}{2\times 3}
Pūrua 16.
z=\frac{-16±\sqrt{256-12\times 20}}{2\times 3}
Whakareatia -4 ki te 3.
z=\frac{-16±\sqrt{256-240}}{2\times 3}
Whakareatia -12 ki te 20.
z=\frac{-16±\sqrt{16}}{2\times 3}
Tāpiri 256 ki te -240.
z=\frac{-16±4}{2\times 3}
Tuhia te pūtakerua o te 16.
z=\frac{-16±4}{6}
Whakareatia 2 ki te 3.
z=-\frac{12}{6}
Nā, me whakaoti te whārite z=\frac{-16±4}{6} ina he tāpiri te ±. Tāpiri -16 ki te 4.
z=-2
Whakawehe -12 ki te 6.
z=-\frac{20}{6}
Nā, me whakaoti te whārite z=\frac{-16±4}{6} ina he tango te ±. Tango 4 mai i -16.
z=-\frac{10}{3}
Whakahekea te hautanga \frac{-20}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3z^{2}+16z+20=3\left(z-\left(-2\right)\right)\left(z-\left(-\frac{10}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te -\frac{10}{3} mō te x_{2}.
3z^{2}+16z+20=3\left(z+2\right)\left(z+\frac{10}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3z^{2}+16z+20=3\left(z+2\right)\times \frac{3z+10}{3}
Tāpiri \frac{10}{3} ki te z mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3z^{2}+16z+20=\left(z+2\right)\left(3z+10\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.