Tauwehe
\left(3z-1\right)\left(z+5\right)
Aromātai
\left(3z-1\right)\left(z+5\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=14 ab=3\left(-5\right)=-15
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3z^{2}+az+bz-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,15 -3,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
-1+15=14 -3+5=2
Tātaihia te tapeke mō ia takirua.
a=-1 b=15
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(3z^{2}-z\right)+\left(15z-5\right)
Tuhia anō te 3z^{2}+14z-5 hei \left(3z^{2}-z\right)+\left(15z-5\right).
z\left(3z-1\right)+5\left(3z-1\right)
Tauwehea te z i te tuatahi me te 5 i te rōpū tuarua.
\left(3z-1\right)\left(z+5\right)
Whakatauwehea atu te kīanga pātahi 3z-1 mā te whakamahi i te āhuatanga tātai tohatoha.
3z^{2}+14z-5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-14±\sqrt{14^{2}-4\times 3\left(-5\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-14±\sqrt{196-4\times 3\left(-5\right)}}{2\times 3}
Pūrua 14.
z=\frac{-14±\sqrt{196-12\left(-5\right)}}{2\times 3}
Whakareatia -4 ki te 3.
z=\frac{-14±\sqrt{196+60}}{2\times 3}
Whakareatia -12 ki te -5.
z=\frac{-14±\sqrt{256}}{2\times 3}
Tāpiri 196 ki te 60.
z=\frac{-14±16}{2\times 3}
Tuhia te pūtakerua o te 256.
z=\frac{-14±16}{6}
Whakareatia 2 ki te 3.
z=\frac{2}{6}
Nā, me whakaoti te whārite z=\frac{-14±16}{6} ina he tāpiri te ±. Tāpiri -14 ki te 16.
z=\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
z=-\frac{30}{6}
Nā, me whakaoti te whārite z=\frac{-14±16}{6} ina he tango te ±. Tango 16 mai i -14.
z=-5
Whakawehe -30 ki te 6.
3z^{2}+14z-5=3\left(z-\frac{1}{3}\right)\left(z-\left(-5\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{3} mō te x_{1} me te -5 mō te x_{2}.
3z^{2}+14z-5=3\left(z-\frac{1}{3}\right)\left(z+5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3z^{2}+14z-5=3\times \frac{3z-1}{3}\left(z+5\right)
Tango \frac{1}{3} mai i z mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3z^{2}+14z-5=\left(3z-1\right)\left(z+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}