Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 4, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
y=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3y^{2}-4y-4=0
Mā te whakatakotoranga Tauwehe, he tauwehe te y-k o te pūrau mō ia pūtake k. Whakawehea te 3y^{3}-7y^{2}+4 ki te y-1, kia riro ko 3y^{2}-4y-4. Whakaotihia te whārite ina ōrite te hua ki te 0.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te -4 mō te b, me te -4 mō te c i te ture pūrua.
y=\frac{4±8}{6}
Mahia ngā tātaitai.
y=-\frac{2}{3} y=2
Whakaotia te whārite 3y^{2}-4y-4=0 ina he tōrunga te ±, ina he tōraro te ±.
y=1 y=-\frac{2}{3} y=2
Rārangitia ngā otinga katoa i kitea.