Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y\left(3y^{2}+23y+14\right)
Tauwehea te y.
a+b=23 ab=3\times 14=42
Whakaarohia te 3y^{2}+23y+14. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3y^{2}+ay+by+14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,42 2,21 3,14 6,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 42.
1+42=43 2+21=23 3+14=17 6+7=13
Tātaihia te tapeke mō ia takirua.
a=2 b=21
Ko te otinga te takirua ka hoatu i te tapeke 23.
\left(3y^{2}+2y\right)+\left(21y+14\right)
Tuhia anō te 3y^{2}+23y+14 hei \left(3y^{2}+2y\right)+\left(21y+14\right).
y\left(3y+2\right)+7\left(3y+2\right)
Tauwehea te y i te tuatahi me te 7 i te rōpū tuarua.
\left(3y+2\right)\left(y+7\right)
Whakatauwehea atu te kīanga pātahi 3y+2 mā te whakamahi i te āhuatanga tātai tohatoha.
y\left(3y+2\right)\left(y+7\right)
Me tuhi anō te kīanga whakatauwehe katoa.