Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-1 ab=3\left(-4\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3y^{2}+ay+by-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-4 b=3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(3y^{2}-4y\right)+\left(3y-4\right)
Tuhia anō te 3y^{2}-y-4 hei \left(3y^{2}-4y\right)+\left(3y-4\right).
y\left(3y-4\right)+3y-4
Whakatauwehea atu y i te 3y^{2}-4y.
\left(3y-4\right)\left(y+1\right)
Whakatauwehea atu te kīanga pātahi 3y-4 mā te whakamahi i te āhuatanga tātai tohatoha.
y=\frac{4}{3} y=-1
Hei kimi otinga whārite, me whakaoti te 3y-4=0 me te y+1=0.
3y^{2}-y-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-4\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -1 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±\sqrt{1-12\left(-4\right)}}{2\times 3}
Whakareatia -4 ki te 3.
y=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 3}
Whakareatia -12 ki te -4.
y=\frac{-\left(-1\right)±\sqrt{49}}{2\times 3}
Tāpiri 1 ki te 48.
y=\frac{-\left(-1\right)±7}{2\times 3}
Tuhia te pūtakerua o te 49.
y=\frac{1±7}{2\times 3}
Ko te tauaro o -1 ko 1.
y=\frac{1±7}{6}
Whakareatia 2 ki te 3.
y=\frac{8}{6}
Nā, me whakaoti te whārite y=\frac{1±7}{6} ina he tāpiri te ±. Tāpiri 1 ki te 7.
y=\frac{4}{3}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y=-\frac{6}{6}
Nā, me whakaoti te whārite y=\frac{1±7}{6} ina he tango te ±. Tango 7 mai i 1.
y=-1
Whakawehe -6 ki te 6.
y=\frac{4}{3} y=-1
Kua oti te whārite te whakatau.
3y^{2}-y-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3y^{2}-y-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
3y^{2}-y=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
3y^{2}-y=4
Tango -4 mai i 0.
\frac{3y^{2}-y}{3}=\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}-\frac{1}{3}y=\frac{4}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y^{2}-\frac{1}{3}y+\left(-\frac{1}{6}\right)^{2}=\frac{4}{3}+\left(-\frac{1}{6}\right)^{2}
Whakawehea te -\frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{6}. Nā, tāpiria te pūrua o te -\frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{1}{3}y+\frac{1}{36}=\frac{4}{3}+\frac{1}{36}
Pūruatia -\frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{1}{3}y+\frac{1}{36}=\frac{49}{36}
Tāpiri \frac{4}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{1}{6}\right)^{2}=\frac{49}{36}
Tauwehea y^{2}-\frac{1}{3}y+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{1}{6}=\frac{7}{6} y-\frac{1}{6}=-\frac{7}{6}
Whakarūnātia.
y=\frac{4}{3} y=-1
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.