Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3y^{2}=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}=\frac{9}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}=3
Whakawehea te 9 ki te 3, kia riro ko 3.
y=\sqrt{3} y=-\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3y^{2}-9=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 3\left(-9\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 3\left(-9\right)}}{2\times 3}
Pūrua 0.
y=\frac{0±\sqrt{-12\left(-9\right)}}{2\times 3}
Whakareatia -4 ki te 3.
y=\frac{0±\sqrt{108}}{2\times 3}
Whakareatia -12 ki te -9.
y=\frac{0±6\sqrt{3}}{2\times 3}
Tuhia te pūtakerua o te 108.
y=\frac{0±6\sqrt{3}}{6}
Whakareatia 2 ki te 3.
y=\sqrt{3}
Nā, me whakaoti te whārite y=\frac{0±6\sqrt{3}}{6} ina he tāpiri te ±.
y=-\sqrt{3}
Nā, me whakaoti te whārite y=\frac{0±6\sqrt{3}}{6} ina he tango te ±.
y=\sqrt{3} y=-\sqrt{3}
Kua oti te whārite te whakatau.