Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}=\frac{48}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}=16
Whakawehea te 48 ki te 3, kia riro ko 16.
y^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
\left(y-4\right)\left(y+4\right)=0
Whakaarohia te y^{2}-16. Tuhia anō te y^{2}-16 hei y^{2}-4^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=4 y=-4
Hei kimi otinga whārite, me whakaoti te y-4=0 me te y+4=0.
y^{2}=\frac{48}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}=16
Whakawehea te 48 ki te 3, kia riro ko 16.
y=4 y=-4
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}=\frac{48}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}=16
Whakawehea te 48 ki te 3, kia riro ko 16.
y^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-16\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-16\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{64}}{2}
Whakareatia -4 ki te -16.
y=\frac{0±8}{2}
Tuhia te pūtakerua o te 64.
y=4
Nā, me whakaoti te whārite y=\frac{0±8}{2} ina he tāpiri te ±. Whakawehe 8 ki te 2.
y=-4
Nā, me whakaoti te whārite y=\frac{0±8}{2} ina he tango te ±. Whakawehe -8 ki te 2.
y=4 y=-4
Kua oti te whārite te whakatau.