Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3y^{2}+y-7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-1±\sqrt{1^{2}-4\times 3\left(-7\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 1 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times 3\left(-7\right)}}{2\times 3}
Pūrua 1.
y=\frac{-1±\sqrt{1-12\left(-7\right)}}{2\times 3}
Whakareatia -4 ki te 3.
y=\frac{-1±\sqrt{1+84}}{2\times 3}
Whakareatia -12 ki te -7.
y=\frac{-1±\sqrt{85}}{2\times 3}
Tāpiri 1 ki te 84.
y=\frac{-1±\sqrt{85}}{6}
Whakareatia 2 ki te 3.
y=\frac{\sqrt{85}-1}{6}
Nā, me whakaoti te whārite y=\frac{-1±\sqrt{85}}{6} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{85}.
y=\frac{-\sqrt{85}-1}{6}
Nā, me whakaoti te whārite y=\frac{-1±\sqrt{85}}{6} ina he tango te ±. Tango \sqrt{85} mai i -1.
y=\frac{\sqrt{85}-1}{6} y=\frac{-\sqrt{85}-1}{6}
Kua oti te whārite te whakatau.
3y^{2}+y-7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3y^{2}+y-7-\left(-7\right)=-\left(-7\right)
Me tāpiri 7 ki ngā taha e rua o te whārite.
3y^{2}+y=-\left(-7\right)
Mā te tango i te -7 i a ia ake anō ka toe ko te 0.
3y^{2}+y=7
Tango -7 mai i 0.
\frac{3y^{2}+y}{3}=\frac{7}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}+\frac{1}{3}y=\frac{7}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y^{2}+\frac{1}{3}y+\left(\frac{1}{6}\right)^{2}=\frac{7}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+\frac{1}{3}y+\frac{1}{36}=\frac{7}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+\frac{1}{3}y+\frac{1}{36}=\frac{85}{36}
Tāpiri \frac{7}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y+\frac{1}{6}\right)^{2}=\frac{85}{36}
Tauwehea y^{2}+\frac{1}{3}y+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{6}\right)^{2}}=\sqrt{\frac{85}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{1}{6}=\frac{\sqrt{85}}{6} y+\frac{1}{6}=-\frac{\sqrt{85}}{6}
Whakarūnātia.
y=\frac{\sqrt{85}-1}{6} y=\frac{-\sqrt{85}-1}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.