Tauwehe
\left(3y-8\right)\left(y+3\right)
Aromātai
\left(3y-8\right)\left(y+3\right)
Graph
Pātaitai
Polynomial
3 y ^ { 2 } + y - 24
Tohaina
Kua tāruatia ki te papatopenga
a+b=1 ab=3\left(-24\right)=-72
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3y^{2}+ay+by-24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=-8 b=9
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(3y^{2}-8y\right)+\left(9y-24\right)
Tuhia anō te 3y^{2}+y-24 hei \left(3y^{2}-8y\right)+\left(9y-24\right).
y\left(3y-8\right)+3\left(3y-8\right)
Tauwehea te y i te tuatahi me te 3 i te rōpū tuarua.
\left(3y-8\right)\left(y+3\right)
Whakatauwehea atu te kīanga pātahi 3y-8 mā te whakamahi i te āhuatanga tātai tohatoha.
3y^{2}+y-24=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-1±\sqrt{1^{2}-4\times 3\left(-24\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-1±\sqrt{1-4\times 3\left(-24\right)}}{2\times 3}
Pūrua 1.
y=\frac{-1±\sqrt{1-12\left(-24\right)}}{2\times 3}
Whakareatia -4 ki te 3.
y=\frac{-1±\sqrt{1+288}}{2\times 3}
Whakareatia -12 ki te -24.
y=\frac{-1±\sqrt{289}}{2\times 3}
Tāpiri 1 ki te 288.
y=\frac{-1±17}{2\times 3}
Tuhia te pūtakerua o te 289.
y=\frac{-1±17}{6}
Whakareatia 2 ki te 3.
y=\frac{16}{6}
Nā, me whakaoti te whārite y=\frac{-1±17}{6} ina he tāpiri te ±. Tāpiri -1 ki te 17.
y=\frac{8}{3}
Whakahekea te hautanga \frac{16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y=-\frac{18}{6}
Nā, me whakaoti te whārite y=\frac{-1±17}{6} ina he tango te ±. Tango 17 mai i -1.
y=-3
Whakawehe -18 ki te 6.
3y^{2}+y-24=3\left(y-\frac{8}{3}\right)\left(y-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{8}{3} mō te x_{1} me te -3 mō te x_{2}.
3y^{2}+y-24=3\left(y-\frac{8}{3}\right)\left(y+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3y^{2}+y-24=3\times \frac{3y-8}{3}\left(y+3\right)
Tango \frac{8}{3} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3y^{2}+y-24=\left(3y-8\right)\left(y+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}