Whakaoti mō y
y=\frac{-7+\sqrt{23}i}{6}\approx -1.166666667+0.799305254i
y=\frac{-\sqrt{23}i-7}{6}\approx -1.166666667-0.799305254i
Tohaina
Kua tāruatia ki te papatopenga
3y^{2}+7y+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-7±\sqrt{7^{2}-4\times 3\times 6}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 7 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-7±\sqrt{49-4\times 3\times 6}}{2\times 3}
Pūrua 7.
y=\frac{-7±\sqrt{49-12\times 6}}{2\times 3}
Whakareatia -4 ki te 3.
y=\frac{-7±\sqrt{49-72}}{2\times 3}
Whakareatia -12 ki te 6.
y=\frac{-7±\sqrt{-23}}{2\times 3}
Tāpiri 49 ki te -72.
y=\frac{-7±\sqrt{23}i}{2\times 3}
Tuhia te pūtakerua o te -23.
y=\frac{-7±\sqrt{23}i}{6}
Whakareatia 2 ki te 3.
y=\frac{-7+\sqrt{23}i}{6}
Nā, me whakaoti te whārite y=\frac{-7±\sqrt{23}i}{6} ina he tāpiri te ±. Tāpiri -7 ki te i\sqrt{23}.
y=\frac{-\sqrt{23}i-7}{6}
Nā, me whakaoti te whārite y=\frac{-7±\sqrt{23}i}{6} ina he tango te ±. Tango i\sqrt{23} mai i -7.
y=\frac{-7+\sqrt{23}i}{6} y=\frac{-\sqrt{23}i-7}{6}
Kua oti te whārite te whakatau.
3y^{2}+7y+6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3y^{2}+7y+6-6=-6
Me tango 6 mai i ngā taha e rua o te whārite.
3y^{2}+7y=-6
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
\frac{3y^{2}+7y}{3}=-\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}+\frac{7}{3}y=-\frac{6}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y^{2}+\frac{7}{3}y=-2
Whakawehe -6 ki te 3.
y^{2}+\frac{7}{3}y+\left(\frac{7}{6}\right)^{2}=-2+\left(\frac{7}{6}\right)^{2}
Whakawehea te \frac{7}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{6}. Nā, tāpiria te pūrua o te \frac{7}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+\frac{7}{3}y+\frac{49}{36}=-2+\frac{49}{36}
Pūruatia \frac{7}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+\frac{7}{3}y+\frac{49}{36}=-\frac{23}{36}
Tāpiri -2 ki te \frac{49}{36}.
\left(y+\frac{7}{6}\right)^{2}=-\frac{23}{36}
Tauwehea y^{2}+\frac{7}{3}y+\frac{49}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{7}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{7}{6}=\frac{\sqrt{23}i}{6} y+\frac{7}{6}=-\frac{\sqrt{23}i}{6}
Whakarūnātia.
y=\frac{-7+\sqrt{23}i}{6} y=\frac{-\sqrt{23}i-7}{6}
Me tango \frac{7}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}