Tauwehe
\left(3y-1\right)\left(y+2\right)
Aromātai
\left(3y-1\right)\left(y+2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=5 ab=3\left(-2\right)=-6
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3y^{2}+ay+by-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-1 b=6
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(3y^{2}-y\right)+\left(6y-2\right)
Tuhia anō te 3y^{2}+5y-2 hei \left(3y^{2}-y\right)+\left(6y-2\right).
y\left(3y-1\right)+2\left(3y-1\right)
Tauwehea te y i te tuatahi me te 2 i te rōpū tuarua.
\left(3y-1\right)\left(y+2\right)
Whakatauwehea atu te kīanga pātahi 3y-1 mā te whakamahi i te āhuatanga tātai tohatoha.
3y^{2}+5y-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-5±\sqrt{5^{2}-4\times 3\left(-2\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-5±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
Pūrua 5.
y=\frac{-5±\sqrt{25-12\left(-2\right)}}{2\times 3}
Whakareatia -4 ki te 3.
y=\frac{-5±\sqrt{25+24}}{2\times 3}
Whakareatia -12 ki te -2.
y=\frac{-5±\sqrt{49}}{2\times 3}
Tāpiri 25 ki te 24.
y=\frac{-5±7}{2\times 3}
Tuhia te pūtakerua o te 49.
y=\frac{-5±7}{6}
Whakareatia 2 ki te 3.
y=\frac{2}{6}
Nā, me whakaoti te whārite y=\frac{-5±7}{6} ina he tāpiri te ±. Tāpiri -5 ki te 7.
y=\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y=-\frac{12}{6}
Nā, me whakaoti te whārite y=\frac{-5±7}{6} ina he tango te ±. Tango 7 mai i -5.
y=-2
Whakawehe -12 ki te 6.
3y^{2}+5y-2=3\left(y-\frac{1}{3}\right)\left(y-\left(-2\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{3} mō te x_{1} me te -2 mō te x_{2}.
3y^{2}+5y-2=3\left(y-\frac{1}{3}\right)\left(y+2\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3y^{2}+5y-2=3\times \frac{3y-1}{3}\left(y+2\right)
Tango \frac{1}{3} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3y^{2}+5y-2=\left(3y-1\right)\left(y+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}