Whakaoti mō x
x=-y-6
Whakaoti mō y
y=-\left(x+6\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
-18-3x=3y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-3x=3y+18
Me tāpiri te 18 ki ngā taha e rua.
\frac{-3x}{-3}=\frac{3y+18}{-3}
Whakawehea ngā taha e rua ki te -3.
x=\frac{3y+18}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x=-\left(y+6\right)
Whakawehe 18+3y ki te -3.
3y=-3x-18
He hanga arowhānui tō te whārite.
\frac{3y}{3}=\frac{-3x-18}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{-3x-18}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y=-x-6
Whakawehe -18-3x ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}