Whakaoti mō x
x=\frac{1}{3z-7}
z\neq \frac{7}{3}
Whakaoti mō z
z=\frac{7}{3}+\frac{1}{3x}
x\neq 0
Tohaina
Kua tāruatia ki te papatopenga
3xz-7x=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\left(3z-7\right)x=1
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(3z-7\right)x}{3z-7}=\frac{1}{3z-7}
Whakawehea ngā taha e rua ki te 3z-7.
x=\frac{1}{3z-7}
Mā te whakawehe ki te 3z-7 ka wetekia te whakareanga ki te 3z-7.
3xz-1=7x
Me tāpiri te 7x ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3xz=7x+1
Me tāpiri te 1 ki ngā taha e rua.
\frac{3xz}{3x}=\frac{7x+1}{3x}
Whakawehea ngā taha e rua ki te 3x.
z=\frac{7x+1}{3x}
Mā te whakawehe ki te 3x ka wetekia te whakareanga ki te 3x.
z=\frac{7}{3}+\frac{1}{3x}
Whakawehe 7x+1 ki te 3x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}