Whakaoti mō x
x=-\frac{3y}{2}-1
Whakaoti mō y
y=\frac{-2x-2}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-y+2-x=-4y
Tangohia te x mai i ngā taha e rua.
2x-y+2=-4y
Pahekotia te 3x me -x, ka 2x.
2x+2=-4y+y
Me tāpiri te y ki ngā taha e rua.
2x+2=-3y
Pahekotia te -4y me y, ka -3y.
2x=-3y-2
Tangohia te 2 mai i ngā taha e rua.
\frac{2x}{2}=\frac{-3y-2}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{-3y-2}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x=-\frac{3y}{2}-1
Whakawehe -3y-2 ki te 2.
3x-y+2+4y=x
Me tāpiri te 4y ki ngā taha e rua.
3x+3y+2=x
Pahekotia te -y me 4y, ka 3y.
3y+2=x-3x
Tangohia te 3x mai i ngā taha e rua.
3y+2=-2x
Pahekotia te x me -3x, ka -2x.
3y=-2x-2
Tangohia te 2 mai i ngā taha e rua.
\frac{3y}{3}=\frac{-2x-2}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{-2x-2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}