Whakaoti mō x
x=-\frac{A^{2}-9A-9}{3\left(A+1\right)}
A\neq -1\text{ and }A\neq 0
Whakaoti mō A (complex solution)
A=\frac{\sqrt{9x^{2}-66x+117}-3x+9}{2}
A=\frac{-\sqrt{9x^{2}-66x+117}-3x+9}{2}\text{, }x\neq 3
Whakaoti mō A
A=\frac{\sqrt{9x^{2}-66x+117}-3x+9}{2}
A=\frac{-\sqrt{9x^{2}-66x+117}-3x+9}{2}\text{, }x\geq \frac{13}{3}\text{ or }x<3
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
3 x - A ( \frac { A ^ { 3 } } { A + A ^ { 2 } } ) = 9 - A ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
3xA\left(A+1\right)-AA^{3}=A\left(A+1\right)\times 9-A^{2}A\left(A+1\right)
Whakareatia ngā taha e rua o te whārite ki te A\left(A+1\right).
3xA\left(A+1\right)-A^{4}=A\left(A+1\right)\times 9-A^{2}A\left(A+1\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
3xA^{2}+3xA-A^{4}=A\left(A+1\right)\times 9-A^{2}A\left(A+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3xA ki te A+1.
3xA^{2}+3xA-A^{4}=A\left(A+1\right)\times 9-A^{3}\left(A+1\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
3xA^{2}+3xA-A^{4}=\left(A^{2}+A\right)\times 9-A^{3}\left(A+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te A ki te A+1.
3xA^{2}+3xA-A^{4}=9A^{2}+9A-A^{3}\left(A+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te A^{2}+A ki te 9.
3xA^{2}+3xA-A^{4}=9A^{2}+9A-A^{4}-A^{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -A^{3} ki te A+1.
3xA^{2}+3xA=9A^{2}+9A-A^{4}-A^{3}+A^{4}
Me tāpiri te A^{4} ki ngā taha e rua.
3xA^{2}+3xA=9A^{2}+9A-A^{3}
Pahekotia te -A^{4} me A^{4}, ka 0.
\left(3A^{2}+3A\right)x=9A^{2}+9A-A^{3}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(3A^{2}+3A\right)x=9A+9A^{2}-A^{3}
He hanga arowhānui tō te whārite.
\frac{\left(3A^{2}+3A\right)x}{3A^{2}+3A}=\frac{A\left(9+9A-A^{2}\right)}{3A^{2}+3A}
Whakawehea ngā taha e rua ki te 3A^{2}+3A.
x=\frac{A\left(9+9A-A^{2}\right)}{3A^{2}+3A}
Mā te whakawehe ki te 3A^{2}+3A ka wetekia te whakareanga ki te 3A^{2}+3A.
x=\frac{9+9A-A^{2}}{3\left(A+1\right)}
Whakawehe A\left(9A+9-A^{2}\right) ki te 3A^{2}+3A.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}