Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō A (complex solution)
Tick mark Image
Whakaoti mō A
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3xA\left(A+1\right)-AA^{3}=A\left(A+1\right)\times 9-A^{2}A\left(A+1\right)
Whakareatia ngā taha e rua o te whārite ki te A\left(A+1\right).
3xA\left(A+1\right)-A^{4}=A\left(A+1\right)\times 9-A^{2}A\left(A+1\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
3xA^{2}+3xA-A^{4}=A\left(A+1\right)\times 9-A^{2}A\left(A+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3xA ki te A+1.
3xA^{2}+3xA-A^{4}=A\left(A+1\right)\times 9-A^{3}\left(A+1\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
3xA^{2}+3xA-A^{4}=\left(A^{2}+A\right)\times 9-A^{3}\left(A+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te A ki te A+1.
3xA^{2}+3xA-A^{4}=9A^{2}+9A-A^{3}\left(A+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te A^{2}+A ki te 9.
3xA^{2}+3xA-A^{4}=9A^{2}+9A-A^{4}-A^{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -A^{3} ki te A+1.
3xA^{2}+3xA=9A^{2}+9A-A^{4}-A^{3}+A^{4}
Me tāpiri te A^{4} ki ngā taha e rua.
3xA^{2}+3xA=9A^{2}+9A-A^{3}
Pahekotia te -A^{4} me A^{4}, ka 0.
\left(3A^{2}+3A\right)x=9A^{2}+9A-A^{3}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(3A^{2}+3A\right)x=9A+9A^{2}-A^{3}
He hanga arowhānui tō te whārite.
\frac{\left(3A^{2}+3A\right)x}{3A^{2}+3A}=\frac{A\left(9+9A-A^{2}\right)}{3A^{2}+3A}
Whakawehea ngā taha e rua ki te 3A^{2}+3A.
x=\frac{A\left(9+9A-A^{2}\right)}{3A^{2}+3A}
Mā te whakawehe ki te 3A^{2}+3A ka wetekia te whakareanga ki te 3A^{2}+3A.
x=\frac{9+9A-A^{2}}{3\left(A+1\right)}
Whakawehe A\left(9A+9-A^{2}\right) ki te 3A^{2}+3A.