Aromātai
2-4x
Whakaroha
2-4x
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
3 x - 6 ( \frac { x } { 2 } + \frac { 1 } { 3 } ) - 4 ( x - 1 )
Tohaina
Kua tāruatia ki te papatopenga
3x-6\left(\frac{3x}{6}+\frac{2}{6}\right)-4\left(x-1\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{x}{2} ki te \frac{3}{3}. Whakareatia \frac{1}{3} ki te \frac{2}{2}.
3x-6\times \frac{3x+2}{6}-4\left(x-1\right)
Tā te mea he rite te tauraro o \frac{3x}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3x-\left(3x+2\right)-4\left(x-1\right)
Me whakakore te 6 me te 6.
3x-3x-2-4\left(x-1\right)
Hei kimi i te tauaro o 3x+2, kimihia te tauaro o ia taurangi.
-2-4\left(x-1\right)
Pahekotia te 3x me -3x, ka 0.
-2-4x+4
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-1.
2-4x
Tāpirihia te -2 ki te 4, ka 2.
3x-6\left(\frac{3x}{6}+\frac{2}{6}\right)-4\left(x-1\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{x}{2} ki te \frac{3}{3}. Whakareatia \frac{1}{3} ki te \frac{2}{2}.
3x-6\times \frac{3x+2}{6}-4\left(x-1\right)
Tā te mea he rite te tauraro o \frac{3x}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3x-\left(3x+2\right)-4\left(x-1\right)
Me whakakore te 6 me te 6.
3x-3x-2-4\left(x-1\right)
Hei kimi i te tauaro o 3x+2, kimihia te tauaro o ia taurangi.
-2-4\left(x-1\right)
Pahekotia te 3x me -3x, ka 0.
-2-4x+4
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-1.
2-4x
Tāpirihia te -2 ki te 4, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}