Whakaoti mō x, y
x=\frac{9}{13}\approx 0.692307692
y=-\frac{5}{13}\approx -0.384615385
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-5y=4,9x-2y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-5y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=5y+4
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(5y+4\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{5}{3}y+\frac{4}{3}
Whakareatia \frac{1}{3} ki te 5y+4.
9\left(\frac{5}{3}y+\frac{4}{3}\right)-2y=7
Whakakapia te \frac{5y+4}{3} mō te x ki tērā atu whārite, 9x-2y=7.
15y+12-2y=7
Whakareatia 9 ki te \frac{5y+4}{3}.
13y+12=7
Tāpiri 15y ki te -2y.
13y=-5
Me tango 12 mai i ngā taha e rua o te whārite.
y=-\frac{5}{13}
Whakawehea ngā taha e rua ki te 13.
x=\frac{5}{3}\left(-\frac{5}{13}\right)+\frac{4}{3}
Whakaurua te -\frac{5}{13} mō y ki x=\frac{5}{3}y+\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{25}{39}+\frac{4}{3}
Whakareatia \frac{5}{3} ki te -\frac{5}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{13}
Tāpiri \frac{4}{3} ki te -\frac{25}{39} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{13},y=-\frac{5}{13}
Kua oti te pūnaha te whakatau.
3x-5y=4,9x-2y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-5\\9&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 9\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 9\right)}\\-\frac{9}{3\left(-2\right)-\left(-5\times 9\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 9\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{39}&\frac{5}{39}\\-\frac{3}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{39}\times 4+\frac{5}{39}\times 7\\-\frac{3}{13}\times 4+\frac{1}{13}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{13}\\-\frac{5}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{13},y=-\frac{5}{13}
Tangohia ngā huānga poukapa x me y.
3x-5y=4,9x-2y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9\times 3x+9\left(-5\right)y=9\times 4,3\times 9x+3\left(-2\right)y=3\times 7
Kia ōrite ai a 3x me 9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
27x-45y=36,27x-6y=21
Whakarūnātia.
27x-27x-45y+6y=36-21
Me tango 27x-6y=21 mai i 27x-45y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-45y+6y=36-21
Tāpiri 27x ki te -27x. Ka whakakore atu ngā kupu 27x me -27x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-39y=36-21
Tāpiri -45y ki te 6y.
-39y=15
Tāpiri 36 ki te -21.
y=-\frac{5}{13}
Whakawehea ngā taha e rua ki te -39.
9x-2\left(-\frac{5}{13}\right)=7
Whakaurua te -\frac{5}{13} mō y ki 9x-2y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
9x+\frac{10}{13}=7
Whakareatia -2 ki te -\frac{5}{13}.
9x=\frac{81}{13}
Me tango \frac{10}{13} mai i ngā taha e rua o te whārite.
x=\frac{9}{13}
Whakawehea ngā taha e rua ki te 9.
x=\frac{9}{13},y=-\frac{5}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}