Whakaoti mō x
x=2y+\frac{25}{2}
Whakaoti mō y
y=\frac{x}{2}-\frac{25}{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-4y-25-x=0
Tangohia te x mai i ngā taha e rua.
2x-4y-25=0
Pahekotia te 3x me -x, ka 2x.
2x-25=4y
Me tāpiri te 4y ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
2x=4y+25
Me tāpiri te 25 ki ngā taha e rua.
\frac{2x}{2}=\frac{4y+25}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{4y+25}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x=2y+\frac{25}{2}
Whakawehe 4y+25 ki te 2.
-4y-25=x-3x
Tangohia te 3x mai i ngā taha e rua.
-4y-25=-2x
Pahekotia te x me -3x, ka -2x.
-4y=-2x+25
Me tāpiri te 25 ki ngā taha e rua.
-4y=25-2x
He hanga arowhānui tō te whārite.
\frac{-4y}{-4}=\frac{25-2x}{-4}
Whakawehea ngā taha e rua ki te -4.
y=\frac{25-2x}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
y=\frac{x}{2}-\frac{25}{4}
Whakawehe -2x+25 ki te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}