Whakaoti mō x
x=4
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2\sqrt{9x}=-3x
Me tango 3x mai i ngā taha e rua o te whārite.
\left(-2\sqrt{9x}\right)^{2}=\left(-3x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-2\right)^{2}\left(\sqrt{9x}\right)^{2}=\left(-3x\right)^{2}
Whakarohaina te \left(-2\sqrt{9x}\right)^{2}.
4\left(\sqrt{9x}\right)^{2}=\left(-3x\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4\times 9x=\left(-3x\right)^{2}
Tātaihia te \sqrt{9x} mā te pū o 2, kia riro ko 9x.
36x=\left(-3x\right)^{2}
Whakareatia te 4 ki te 9, ka 36.
36x=\left(-3\right)^{2}x^{2}
Whakarohaina te \left(-3x\right)^{2}.
36x=9x^{2}
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
36x-9x^{2}=0
Tangohia te 9x^{2} mai i ngā taha e rua.
x\left(36-9x\right)=0
Tauwehea te x.
x=0 x=4
Hei kimi otinga whārite, me whakaoti te x=0 me te 36-9x=0.
3\times 0-2\sqrt{9\times 0}=0
Whakakapia te 0 mō te x i te whārite 3x-2\sqrt{9x}=0.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
3\times 4-2\sqrt{9\times 4}=0
Whakakapia te 4 mō te x i te whārite 3x-2\sqrt{9x}=0.
0=0
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=0 x=4
Rārangihia ngā rongoā katoa o -2\sqrt{9x}=-3x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}