Whakaoti mō x
x=5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-15=2x^{2}-10x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-5.
3x-15-2x^{2}=-10x
Tangohia te 2x^{2} mai i ngā taha e rua.
3x-15-2x^{2}+10x=0
Me tāpiri te 10x ki ngā taha e rua.
13x-15-2x^{2}=0
Pahekotia te 3x me 10x, ka 13x.
-2x^{2}+13x-15=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=13 ab=-2\left(-15\right)=30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,30 2,15 3,10 5,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
1+30=31 2+15=17 3+10=13 5+6=11
Tātaihia te tapeke mō ia takirua.
a=10 b=3
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(-2x^{2}+10x\right)+\left(3x-15\right)
Tuhia anō te -2x^{2}+13x-15 hei \left(-2x^{2}+10x\right)+\left(3x-15\right).
2x\left(-x+5\right)-3\left(-x+5\right)
Tauwehea te 2x i te tuatahi me te -3 i te rōpū tuarua.
\left(-x+5\right)\left(2x-3\right)
Whakatauwehea atu te kīanga pātahi -x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te -x+5=0 me te 2x-3=0.
3x-15=2x^{2}-10x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-5.
3x-15-2x^{2}=-10x
Tangohia te 2x^{2} mai i ngā taha e rua.
3x-15-2x^{2}+10x=0
Me tāpiri te 10x ki ngā taha e rua.
13x-15-2x^{2}=0
Pahekotia te 3x me 10x, ka 13x.
-2x^{2}+13x-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 13 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
Pūrua 13.
x=\frac{-13±\sqrt{169+8\left(-15\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-13±\sqrt{169-120}}{2\left(-2\right)}
Whakareatia 8 ki te -15.
x=\frac{-13±\sqrt{49}}{2\left(-2\right)}
Tāpiri 169 ki te -120.
x=\frac{-13±7}{2\left(-2\right)}
Tuhia te pūtakerua o te 49.
x=\frac{-13±7}{-4}
Whakareatia 2 ki te -2.
x=-\frac{6}{-4}
Nā, me whakaoti te whārite x=\frac{-13±7}{-4} ina he tāpiri te ±. Tāpiri -13 ki te 7.
x=\frac{3}{2}
Whakahekea te hautanga \frac{-6}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{20}{-4}
Nā, me whakaoti te whārite x=\frac{-13±7}{-4} ina he tango te ±. Tango 7 mai i -13.
x=5
Whakawehe -20 ki te -4.
x=\frac{3}{2} x=5
Kua oti te whārite te whakatau.
3x-15=2x^{2}-10x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-5.
3x-15-2x^{2}=-10x
Tangohia te 2x^{2} mai i ngā taha e rua.
3x-15-2x^{2}+10x=0
Me tāpiri te 10x ki ngā taha e rua.
13x-15-2x^{2}=0
Pahekotia te 3x me 10x, ka 13x.
13x-2x^{2}=15
Me tāpiri te 15 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-2x^{2}+13x=15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+13x}{-2}=\frac{15}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{13}{-2}x=\frac{15}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-\frac{13}{2}x=\frac{15}{-2}
Whakawehe 13 ki te -2.
x^{2}-\frac{13}{2}x=-\frac{15}{2}
Whakawehe 15 ki te -2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{15}{2}+\left(-\frac{13}{4}\right)^{2}
Whakawehea te -\frac{13}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{4}. Nā, tāpiria te pūrua o te -\frac{13}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{15}{2}+\frac{169}{16}
Pūruatia -\frac{13}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{49}{16}
Tāpiri -\frac{15}{2} ki te \frac{169}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{13}{4}\right)^{2}=\frac{49}{16}
Tauwehea x^{2}-\frac{13}{2}x+\frac{169}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{4}=\frac{7}{4} x-\frac{13}{4}=-\frac{7}{4}
Whakarūnātia.
x=5 x=\frac{3}{2}
Me tāpiri \frac{13}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}