Whakaoti mō x, y
x=1
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-12y=15,2x-9y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-12y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=12y+15
Me tāpiri 12y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(12y+15\right)
Whakawehea ngā taha e rua ki te 3.
x=4y+5
Whakareatia \frac{1}{3} ki te 12y+15.
2\left(4y+5\right)-9y=11
Whakakapia te 4y+5 mō te x ki tērā atu whārite, 2x-9y=11.
8y+10-9y=11
Whakareatia 2 ki te 4y+5.
-y+10=11
Tāpiri 8y ki te -9y.
-y=1
Me tango 10 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -1.
x=4\left(-1\right)+5
Whakaurua te -1 mō y ki x=4y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4+5
Whakareatia 4 ki te -1.
x=1
Tāpiri 5 ki te -4.
x=1,y=-1
Kua oti te pūnaha te whakatau.
3x-12y=15,2x-9y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-12\\2&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-12\\2&-9\end{matrix}\right))\left(\begin{matrix}3&-12\\2&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-12\\2&-9\end{matrix}\right))\left(\begin{matrix}15\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-12\\2&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-12\\2&-9\end{matrix}\right))\left(\begin{matrix}15\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-12\\2&-9\end{matrix}\right))\left(\begin{matrix}15\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{3\left(-9\right)-\left(-12\times 2\right)}&-\frac{-12}{3\left(-9\right)-\left(-12\times 2\right)}\\-\frac{2}{3\left(-9\right)-\left(-12\times 2\right)}&\frac{3}{3\left(-9\right)-\left(-12\times 2\right)}\end{matrix}\right)\left(\begin{matrix}15\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-4\\\frac{2}{3}&-1\end{matrix}\right)\left(\begin{matrix}15\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 15-4\times 11\\\frac{2}{3}\times 15-11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
3x-12y=15,2x-9y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-12\right)y=2\times 15,3\times 2x+3\left(-9\right)y=3\times 11
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-24y=30,6x-27y=33
Whakarūnātia.
6x-6x-24y+27y=30-33
Me tango 6x-27y=33 mai i 6x-24y=30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-24y+27y=30-33
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=30-33
Tāpiri -24y ki te 27y.
3y=-3
Tāpiri 30 ki te -33.
y=-1
Whakawehea ngā taha e rua ki te 3.
2x-9\left(-1\right)=11
Whakaurua te -1 mō y ki 2x-9y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+9=11
Whakareatia -9 ki te -1.
2x=2
Me tango 9 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 2.
x=1,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}